千锋教育-做有情怀、有良心、有品质的职业教育机构

400-811-9990
手机站
千锋教育

千锋学习站 | 随时随地免费学

千锋教育

扫一扫进入千锋手机站

领取全套视频
千锋教育

关注千锋学习站小程序
随时随地免费学习课程

上海
  • 北京
  • 郑州
  • 武汉
  • 成都
  • 西安
  • 沈阳
  • 广州
  • 南京
  • 深圳
  • 大连
  • 青岛
  • 杭州
  • 重庆
当前位置:上海千锋IT培训  >  技术干货  >  Python中使用K-means算法

Python中使用K-means算法

来源:千锋教育
发布人:xqq
时间: 2023-11-12 17:39:52

python中使用K-means算法

k-means是机器学习中最常用的聚类算法,关于k-means算法的数学原理、算法、伪码等已有相当丰富的文献,在此不再赘述。

1、调用以下库

importnumpyasnp#用于抽样和生成随机数

fromsklearn.clusterimportKMeans#sklearn自带的Kmeans算法,用于严重本文算法结果是否正确

importmatplotlib.pyplotasplt#结果可视化

importsys#需要用到sys.exit()函数

若不需要验证聚类结果是否可以不使用Sklearn库。

2、生成用于训练的随机数据

np.set_printoptions(suppress=True)#令numpy的结果不以科学计数法的方式输出

Data=np.array([[1.0,2.0],[1.5,1.8],[3,4],[6,8],[8,8],[1,0.6],

[9,11],[7,10]])#你也可以通过抽样的方式来更快的获得测试数据

3、定义用于选择随机初始点和簇数(k)的函数

defK_means(data,k):

globalMean

mean=[]

a=np.max(data[:,0])

b=np.min(data[:,0])

c=np.max(data[:,1])

d=np.min(data[:,1])

foriinrange(k):

x=np.random.uniform(a,b,1)

#此处返回array

y=np.random.uniform(c,d,1)#此处返回array

mean.append([float(x),float(y)])

Mean=np.array(mean)

returnMean

在上面的代码中,为了限定初始点(x,y)的位置不会超出样本点的范围,因此均匀抽样的上下限是指训练数据(a,b)和(c,d)的最小横距。

4、定义可视化函数,绘制测试数据散点图

defvision(data,cell):

plt.figure(figsize=(12,6))

ax1=plt.subplot(121)

ax1.scatter(Data[:,0],Data[:,1])#原始数据散点图

ax1.scatter(point[:,0],point[:,0])#同时将随机选取的初始点表示出来

plt.xlabel("x")

plt.ylabel("y")

plt.title("scatterof"+"rural"+"data")

ax2=plt.subplot(122)

ax2.scatter(Data[:,0],Data[:,1])#原始数据散点图

ax2.scatter(data[:,0],data[:,1])#经过迭代后最终确定的聚类点

plt.xlabel("x")

plt.ylabel("y")

plt.title("scatterof"+cell+"data")

plt.show()

聚类结果的可视化对于判断聚类结果的准确性至关重要。

5、定义迭代过程,通过不断计算各个样本对聚类点的欧式聚类,来不断更新聚类点

defiteration(Data,point):

A=[]

B=[]

foriinrange(len(Data)):

d1=np.sqrt(sum(pow(Data[i]-point[0],2)))

d2=np.sqrt(sum(pow(Data[i]-point[1],2)))

ifd1>d2:

A.append(list(Data[i]))

else:

B.append(list(Data[i]))

iflen(A)==len(Data)orlen(B)==len(Data):

print("初始化错误")

sys.exit(0)

new_x1=np.mean(np.array(A)[:,0])

new_y1=np.mean(np.array(A)[:,1])

new_x2=np.mean(np.array(B)[:,0])

new_y2=np.mean(np.array(B)[:,1])

new_point=np.array([[new_x1,new_y1],[new_x2,new_y2]])

returnnew_point

注意,上段代码中加入了一个if语句

iflen(A)==len(Data)orlen(B)==len(Data):

print("初始化错误")

sys.exit(0)

由于初始点是随机产生的,所以这个条件语句是非常必要的,因此有可能所有的样本点都只接近一个聚类中心而远离另一个聚类中心,这样就不能形成两个聚类中心,程序将会报错,因此我们需要排除出现这种情况的可能性。一旦所有样本点都接近一个聚类中心时令程序停止。

以上就是Python中使用K-means算法,希望能对大家有所帮助!更多Python学习教程请关注IT培训机构:千锋教育。

声明:本站稿件版权均属千锋教育所有,未经许可不得擅自转载。

猜你喜欢LIKE

python对称差集是什么?

2023-11-12

python命令模式的作用

2023-11-12

pythonpopitem如何使用

2023-11-12

最新文章NEW

python中如何编写函数并调用?

2023-11-12

python中list与array有什么区别?

2023-11-12

pandas中Series常见属性有哪些?

2023-11-12

相关推荐HOT

更多>>

快速通道 更多>>

最新开班信息 更多>>

网友热搜 更多>>